Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 45(2): 247-255, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31005059

RESUMO

The medial habenula (MHb) is considered a brain center regulating aversive states. The mu opioid receptor (MOR) has been traditionally studied at the level of nociceptive and mesolimbic circuits, for key roles in pain relief and reward processing. MOR is also densely expressed in MHb, however, MOR function at this brain site is virtually unknown. Here we tested the hypothesis that MOR in the MHb (MHb-MOR) also regulates aversion processing. We used chnrb4-Cre driver mice to delete the Oprm1 gene in chnrb4-neurons, predominantly expressed in the MHb. Conditional mutant (B4MOR) mice showed habenula-specific reduction of MOR expression, restricted to chnrb4-neurons (50% MHb-MORs). We tested B4MOR mice in behavioral assays to evaluate effects of MOR activation by morphine, and MOR blockade by naloxone. Locomotor, analgesic, rewarding, and motivational effects of morphine were preserved in conditional mutants. In contrast, conditioned place aversion (CPA) elicited by naloxone was reduced in both naïve (high dose) and morphine-dependent (low dose) B4MOR mice. Further, physical signs of withdrawal precipitated by either MOR (naloxone) or nicotinic receptor (mecamylamine) blockade were attenuated. These data suggest that MORs expressed in MHb B4-neurons contribute to aversive effects of naloxone, including negative effect and aversive effects of opioid withdrawal. MORs are inhibitory receptors, therefore we propose that endogenous MOR signaling normally inhibits chnrb4-neurons of the MHb and moderates their known aversive activity, which is unmasked upon receptor blockade. Thus, in addition to facilitating reward at several brain sites, tonic MOR activity may also limit aversion within the MHb circuitry.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Habenula/efeitos dos fármacos , Habenula/metabolismo , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides mu/deficiência , Animais , Aprendizagem da Esquiva/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Opioides mu/genética
2.
Mol Psychiatry ; 23(8): 1717-1730, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28924188

RESUMO

Dopamine in prefrontal cortices is implicated in cognitive and emotional functions, and the dysfunction of prefrontal dopamine has been associated with cognitive and emotional deficits in mental illnesses. These findings have led to clinical trials of dopamine-targeting drugs and brain imaging of dopamine receptors in patients with mental illnesses. Rodent studies have suggested that dopaminergic pathway projecting to the medial prefrontal cortex (mPFC) suppresses stress susceptibility. Although various types of mPFC neurons express several dopamine receptor subtypes, previous studies neither isolated a role of dopamine receptor subtype nor identified the site of its action in mPFC. Using social defeat stress (SDS) in mice, here we identified a role of dopamine D1 receptor subtype in mPFC excitatory neurons in suppressing stress susceptibility. Repeated social defeat stress (R-SDS) reduces the expression of D1 receptor subtype in mPFC of mice susceptible to R-SDS. Knockdown of D1 receptor subtype in whole neuronal populations or excitatory neurons in mPFC facilitates the induction of social avoidance by SDS. Single social defeat stress (S-SDS) induces D1 receptor-mediated extracellular signal-regulated kinase phosphorylation and c-Fos expression in mPFC neurons. Whereas R-SDS reduces dendritic lengths of mPFC layer II/III pyramidal neurons, S-SDS increases arborization and spines of apical dendrites of these neurons in a D1 receptor-dependent manner. Collectively, our findings show that D1 receptor subtype and related signaling in mPFC excitatory neurons mediate acute stress-induced dendritic growth of these neurons and contribute to suppression of stress susceptibility. Therefore, we propose that D1 receptor-mediated dendritic growth in mPFC excitatory neurons suppresses stress susceptibility.


Assuntos
Dendritos/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D1/metabolismo , Resiliência Psicológica , Estresse Psicológico/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Crescimento Celular , Dendritos/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/metabolismo , Dominação-Subordinação , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Córtex Pré-Frontal/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia , Receptores de Dopamina D1/genética , Estresse Psicológico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...